
Abstract

Contribntions from the Department of Biology, University of Western Anstralia. No. 3.

Description of a new Genus and two new Species of Blind Freshwater Amphipods from Western Australia, by George E. Nicholls, D.Sc., F.L.S., Professor of Biology in the C'niversity of Western Australia.

(Ticad June 8, 1926. Published July 1:2, 1926.)

In the collection of freslnwater Amphiporls which has accmmulated as one result of a number of trips made into different parts of this State, are a mumber of specimens taken at many localities, closely akin to the form recently deseribed by Chilton in this Jommal, and named by him Neoniphargus westralis, (1925).

The specimens whiclı Chilton examined were some which had been taken by myself, carly in the winter of 1922 , from a small ©foring in a valley just immediately east of Darlington Railway Station. In the first instance they were sent to Dr. Calman of thie British Musemm by Mr. Glauert, to whom I harl snbmitted the specimens for identification. As Dr. Chilton notes, these specimens were retumed to Perth and forwarded to him in 1923".

These first specimens were white in colow and slightly translucent in life, rarely with faint traces of restigial eyes occurring immediately behind the base of the first antenna; in preserved specimens these restiges are no longer to be made ont.

Sperimens obtained later, from other creeks emptying into the Hedena River below Darlington, as well as fron springs and creeks discharging into the Mundaring Reservoir, while closely resemblint: in many points, the bleached specimens first obtained, differe? visibly in colour, rarying from brownish yellow to pink. In these,

[^0]however, the eyes though obviously mucle reduced were clearly visible in life as pinkish white patehes of variable shape and size.

From il dam at Katmming a fow specimens were obtained of gray green eolour, apparently aycless but with some of the appendages remarkably setose.

Reeently, when Dr. Chiltom's paper eame into my hands, I thrmed ont my material in order to label it and I was then impressed with the obvious differences exhibited by the Katanning specinmens. Further investigation showed that the coloured specimens from Darlington and Jmanaring were, also, make in quite important characters the description given of N westorais by Chiltom. Wor the purpose of confirmation, some fresh material was obtatined and examined in the living condition and it appeared evident that the Darkingtom material comprised two distinct but closely related speeies botly akin to the larker specimens from Kataming.

Chilton, while assigning his new species provisionally to Vroniphergus, notes that in a number of points it departed from the comditiom shown by all of the Eastern Austratian and Tasnamian forms, referred to this genus.

The two new forms, to be deseribed below, differ in precisely the same way in respeet to these same chararters as well as in certain others mot recorded for N. wostralis. Aceordingly I have decided to separate the three speries in a new genus for which I propose the name Uroctena. haring reference to the remarkable ancl distinctive comb-like seta-boquing phate on the proximal joint of the third uropod of the male.

UROCTENA gen. nov.

Near to Neomipharofus (?) lne witl Antema 2 in the male very stont and almost pediform; side plates not very deep, fourth little exedvated behind, with gnathopod 2 much larger than gnathopod 1, particularly in the male; accessory gills on several pramem segments. Uropod 3 with prduncle broad, inner ramus small; onter lamus moderately alongated, 2 -jointed; in the ma!e,]roximal end of first joint produced into a flange-like projection set with mumerous stout setac, forming a comb-like structure.

With three species:-
U. affinis sp. nov. (sp. typ.).
U. setosa sp. nov.
U. Westralis (Chilton), N comiphargus w., Chilton Journ. Roy.

Sforeific diatmosis:- Segments of the wrse with a few delieate vate. Eyes absent. Intema 1 rather less then half the length of the body. Amomace es very stout: in the mate abose pediform, wtremely setose; moderato in the female: gnathopod e much larger Hand ginathopod 1 in the male and, to : lessor degree, in the female; without spinoms rows on secom joint bat rery setose on next fome joints: carpme trimgular with distal lohe well developed. propoct owal, fatm shorter and less ohligue tham in tr westralis with irregular lobing littlo developed. Uropol :3, with basal joint broad, outer ramus moderately elongated, two-gsinted; the proximall joint bearing. in the male, a naxow flange-like expansion set with long setules. Telson as wide as long, eleft clightly mor* than half its lengtlu.
 line, largest male, ? mm., largest female, 7.5 mm .

Colour.-In life, grayish green; in spirit, dull brown.

Habilal.-Amongst Chura sp, crowin:, 11 ar edge of a large bervoir at Kiataming. Eight:en sperimens were taken, of which fome were femp? with well developed brood pouch; one large and dight smaller males; five were immature.
ficteiled descriplion:-The first antema is slightly stouter in the male than in the female, haring :a flage?um (20 foints in the: large male examined) 1 㝵 the lemoth of the perduncte; in the female, the flagellum (ot joints) is exictly donble the length of the peeduncle but in meither is it very setose. Thae alecessory flagellum, in both sexes, is 4 jointen! an! eqpals in lengtle, approximately, the first four articles of the primary flagellum.

The second antema is, in the female, (Pl. Xll, Fig, 2) mankedly setose; in the make (Pi. Xii, lies, 1) it is extremely so: in the latter, also, it is very much ston'.r than in the female :mb the niagellum (of ten joints) is : listiactly shorter than the combined lengtle of the two more dist:l ionints of the perlumele. The widtly of the seeond joint of the jeitumele is equal almost to half the length of the liagellum. From a emparison with the figues given by (hilton of U. westratis it will be evident that the flagellmm in that species is, relatively, even shorter still. In the female the two more distal doints of the perluncle (whels is not disproportionately stout) :are searecty longer than the
flagellum; as a whole the appendage (in the female) is more slender than the first antenma of the male, whereas in U. westrolis this does not appear to be the easc (Chiltom, 1925, Figs, 2a \& 3a).

In the peracon the side plates are relatively short with the inferior margin romnderd and closely set with long setae which aplear to be much more numerons than in U, westralis. The first gnathopod of the female (Pl, XIl, Fig. 6) as compared with the second gmathopod, has the carpus considerably longer, but not so distinetly widened distally, and the proporl smaller. In the male (Pl. XII, Fig. 3) the first gmathopot seems not to differ very markedly from that. of l^{l}. westratis. The second gnathopod (ff the female (ll. XII, Fig. J) agrees quite (losely with that of I. Westrulis exeept that the besos of the former is relatively chorter :mbl stouter and the limb as a whole immensely more setose. \therefore very large marsipial plate, a large branchia and a small simple nevessum bramela: are foum related to the hasal joint of this limb. In the male (lll. Xll, Fig. t) this appendage exhibits a mmber of mino differences in the several joints from the corresponding structures in C. westrulis, the meros of the appendage being rewatively shorter antl broder, the earpms much less evidently triangular in ontline, the propod more nearly oval, the dactyl longer amb not so strongly emered. There is no extension of the palmar colge beyont the tip of the dactel such as Chilton shows for l. westralis. The outstanding difference, however, is due to the remmerable develoment of long setae, arranged in bunches moon the terminal joints.

A largely developed setosity is shown in some others of the tieshwater Ampliporla recomed from Eastern Australia, as in Alygtoides gebrie'i and fammarus australis (Sayce 1901) but in nome of these doos it attain such am extreme development as in this Western Australian form. The sexun difference noted by (hilton (1925) in the thime uropol of U. westralis is equally weil marked in l. setose (Pl. XIII, Fig. 7-8) the male alone bearing mon the distal end of the onter ramus a comb-like plate with 12 I.t stiff setac. In its proportions, as compared with the third uropot of U. urstratis, the pedmucle is, perhaps, slightly larger, and is as broad ins long, whereas in l. Westrolis the brealth is much greater than the length; both rami being relatively shorter. The inter ramus is smaller generally, the onter less than twiee the lengtl of the peduncle, with the distal joint quite half the kengeth of the proximal. The telson (Pl. XlII, rig 9) is as broart as long ind cleft seancely more than half its length, the two portions bearing, sub-apically, two or three spines and several longer fund more slender setae, in which arrangement it differs from the other species of this genus.
U. affinis, sp. hov (Pl. Xlll, Figs. 10-15).

Specific Diagnosis.-. Wll the pleon segments except the last with at least a pair of dorsal or dorso-bateral setules; fourth and ifth segments with two and three pairs respectively.

Somewhat degenerate eyes distinetly to be made out in life, hot readily to be observed in specimens preserved in spirits. Anema 1 about half the lengtì of boty, aceessory flagellum 4-6 ioints. Antema 2 - not so stont as in U. Westrulis, 10 jointed lagellum relatively shorter :mul more slender with an olfactory -ylinder on the penultimate joint.

Gnathopod 2 Farger than gathopos 1. Tpon the imere aspect of the basos of this limb is a series of four tramsverse ridges ach bearing from three to five stont spines. Distal lobe upon carpus well developed, propod oval, oblique palm separated only from comvex posterior border of the joint by a triangular projection bearing two stout spines between which the tip of the dactyl is received; aceessory gills comsiderably brameled are found on some of the appendages of the peraeon. Uropod 3 with basal foint nearly as long as broad; imere ramms small, outer two jointed; comb-like plate on proximal joint, bearing from 18-2 stiff, closely-set setae; terminal joint as long as imer ramus and less than one fonrth the length of cutire appendage. Telson, cleft almost to the base, threc-fourths as long as broad and equal to length of proximal joint of third uropod; a small basal portion curved into a slallow hood-like piece continuing the dorsal surface of pleon from which the ceft portion projects at a sharp angle.

Length.-Not exceeding 9 mm .
Colour.-In life yellow brown, somewhat translucent, chalkwhite eyes sometimes appearing faintly pink tinted; in females the ovary is disecmable through the body wall and gives a fantly pink tint which is much more noticeable when the brool pouch is filled with large eggs of salmon pink colour.

Habitat.-Found abundantly near the origins of many small springs around Darlington and Miundaring; usually hiding under decaying vegetable matter or actually burrowing in the sandy or graveliy soil beneath the flowing water.

Remarks.-U. affinis may be distinguished from U. westralis, to which it is closely related, by its distinctive colour, and the presence of degenerate eyes. It appears to differ from that species also in the slightly more slender second antenna (Pl. XIII, Fig. 13-14), and telson (Pl. XIII, Fig. 15).

I had at first supposid that the amoture of spines upon the immer surfaces of the basos of tite stemel grathoporl (I'l. Sill, fies 12) Was a distinction (heracter, as it was not mention? by (filitom as occurring in T. Westritis. I find, however, that it is present in that species also, but is absent in U. setoser. Of these three species, all of which aro obviously closely related, Π. aftimis maty be regrarded as the ienst modifiod, still contiming to leat a life in more or bess ofen water. The water romsess it inhabits are, however, quite liable fo dry up, and a habit of burowing has leeen formed resulting, in the connse of tinte, in the gartial obsolescence of the eyes. It is highly probable that in more bermanent waters a still less modified form yet remains to be discovered in which the eyes are well developed and functional.

Proctent ucstratis, jutging forn its bleached appearance and mactically eycless state, is a trady sulbtermancan form probably derived from U. affinis an! fommi at the surfare now, only when Wasleal up by the stronge flowinc of the springs in exceptionally wet weather. U. selose apromaty leating a lifo in surface water, at the present time, is renalinhle for the striking development of the setac which are presumanhy sensory. It is to be regarded as a binul species becoming mataptod to surface comditions and maty be shphosed to have hern derired directly from a surface living fom rather than from in . Uffomis. lacking as it does the armature of spines on the beass of the seeond grathoport. It would aplear that the gemus has its cesese aftinities with Neomiphargus but has become modified as it result of adaption to brrowing habits and subterranenal life. It is noterorthy, however, that in the Victorian speries, Vremiphar'ons obricni, we have a form practically blind which lita fi: rietheleso departed very little from the typiral Neoniphargid condition.

Jn the remarkable sex :istinction which Croctena exhibits and also in the condition of its mouth parts, there is shomm a wide divergence from atll existing sirecies of Neoniphotgus. The mouth
 Which genus there are resemblances, also, in the elongation of the carpus of the gmathonmes and the shallowness of the side plates.

The members of the semus latek, moreover, the dactylar sensory seta, whicle is so constant in fatne in Neoniphergus. In U. setosa, this is found, in a little developeel state, on one appendage only, the second peracopod.

It is of interent that mo fenwer than five species of blind Anphipods and Isonods are mow known from Western Austratia; this mumber wis abmost certainly be considerably increased as onr knowledge is extemeled for, in a country such as this, with
so little permanently standing fresh water. many aquatic: forms ron! ! surive as such, only by having recourse to the habit of burrowing and remaning underground in subterranem moisture threughtut the long dry season.

List of References.

190: Chilton, Chas, foum, Roy. Soc. W.A., Vol. 11, 192.).
1 1924 Nicholls, (i. E., Journ. Roy. Soc. W.A., Vol. 10, 1924.
$i 926$ Nicholls, G. E., Journ. Roy. Soe. W.A., Vol. 12, 1926, in the press.
1901 Sayce, O. A., Proc. Roy. Soc. Vic., Vol. 13, 1901.

Explanation of Plates.
Plate xif.
(All figures of Uroctena setosa)
Fig. 1 First Antemna, make.
Fig. : First Antomal, fematic.
Fig. : First Guathoporl, male.
Fig. ot Second Enathopod, mate.
lig. is second Ginathopod, femate.
Fig. ${ }^{6}$ First (inathonod, femate.

Plate Xif.

Fig. 7 U setosa, third wropod, female.
Fig. $8 \quad l$. setosa, third uropod, mate.
F゙ig. 9 U. setose, telson,
Fig. 10 U. uffinis, first antema, male.
Fig. 11 U. affinis, first gnathopod, male.
Fig. $12 \quad U$. affinis, second gnathopod, maic.
Fig. 13 U. affinis, third wropod, male, imer view.
Fig. 14 U. affinis, third mopod, male, lateral vien.
lijg. 1.) U. affinis, telson.

[^1]
[^0]: *The small collection was supplementert, is I learn from Mr. Glatert, by specimens which the latter hard himself collesed in the meantime.

[^1]: Printed for the Royal Society of Western dustralia by R. S. Sampsou, 971-97: Hay street. Yerth.

